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Abstract 

An algorithm for calculating the scattering factors of 
atomic fragments in molecules as defined by the 
Stockholder recipe is presented. This method allows 
the calculation, from ab initio molecular wave func- 
tions, of structure factors including individual aniso- 
tropic atomic temperature factors. These structure 
factors agree with the model used in most least- 
squares multipole-refinement procedures. Calcula- 
tions on the H20 molecule illustrate the method. 

1. Introduction 

X-ray scattering experiments can provide us with a 
large amount  of  information on the structures of  
molecular crystals. Accurate high-resolution experi- 
ments can even reveal details of the electron-density 
distribution, such as bonding densities and subtle 
effects of intermolecular interactions and polarization 
by the crystal field (Krijn, Graafsma & Feil, 1988; 
Krijn & Feil, 1988). This fact makes it relevant to 
calculate in advance the results of an X-ray scattering 
experiment by quantum-chemical ab initio methods. 
Firstly, it gives us the possibility to verify experi- 
mentally the approximations used in ab initio calcula- 
tions of the electron-density distribution in a crystal. 
Is it necessary to use the Bloch-function approach in 
crystal calculations or do cluster calculations suffice? 
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When a cluster approach is deemed suitable one can 
test the basis-set truncation error and the approxima- 
tions that have to be used to incorporate the embed- 
ding of the cluster in the crystal, i.e. the polarization 
by the electrostatic crystal field and the effect of  the 
exchange repulsion by the surrounding molecules. 
This is particularly important  when hydrogen bonds 
and electrostatic fields are included in the calculation 
on molecular crystals. Secondly, the theoretically 
calculated X-ray intensities can be used to check the 
crystallographic refinement procedures that are 
applied to remove noise from the data and to obtain 
information on the electron-density distribution in 
analytic form. In particular, one can verify whether 
the structural data on which the theoretical calcula- 
tions are based are reproduced by the refinement. 

Most experimental X-ray diffraction data on crys- 
tals are interpreted with a model based on the assump- 
tion that the crystal is built up of atoms. The lattice 
vibrations of  the crystal, which consist of  zero-point 
vibrations and thermal excitations, are taken into 
account by the Debye-Waller  factor. Widely used 
expressions of the Debye-Wal ler  factor are based on 
the assumption that the atoms behave as coupled 
harmonic oscillators. This harmonic-vibration model 
implies that the density distribution for each nucleus 
is given by a three-dimensional Gaussian distribution. 
The adiabatic approximation leads to the model of 
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866 COMPUTATION OF X-RAY SCATTERING INTENSITIES 

rigid following, i.e. the time-averaged density distri- 
bution of the electrons of the atom is the convolution 
of the static atomic electron-density distribution with 
the Gaussian nuclear distribution. It can be shown 
that the time-averaged X-ray scattering intensities are 
well approximated by the radiation intensities scat- 
tered by the time-averaged electron distribution 
(Stewart & Feil, 1980). Routine analyses of X-ray 
data are usually based on the assumption of spherical 
atoms. This limits the structural information of single 
crystals to atomic positions and thermal-displacement 
parameters. The model lacks the effects of the distor- 
tion of the atomic electron density distribution by the 
chemical bonds and the polarization by the crystal 
field. In a more sophisticated model the nonspherical 
part of the atomic density is expanded into an atom- 
centered basis set of multipole functions. The 
expansion coefficients are parameters in the least- 
squares refinement (Stewart, 1976; Hirshfeld, 1977a; 
Hansen & Coppens, 1978). To obtain a good descrip- 
tion of the difference-density distribution by a limited 
basis set, one has to use rather diffuse functions that 
reach well into the regions occupied by neighboring 
atoms. The assignment of all electron density 
described by a deformation function to the atom on 
which it is centered is an arbitrary partitioning of the 
electron-density distribution that is hard to reconcile 
with the assumption of rigid following. 

The electron-density distribution in molecules can 
be calculated very accurately by quantum-chemical 
methods like the Hartree-Fock SCF-LCAO or 
the density-functional methods. These quantum- 
chemical methods do not include the effects of ther- 
mal motion on the electron-density distribution. Even 
the application of the Born-Oppenheimer approxi- 
mation does not make it feasible to account properly 
for internal vibrations since this would require the 
calculation of the electron wave function for many 
nuclear configurations. Hence, one cannot compare 
the Fourier transform of the theoretically obtained 
electron-density distribution with the experimental 
X-ray structure factors. When applying the Debye- 
Waller formalism, one meets the problem of partition- 
ing the electron-density distribution into atomic frag- 
ments. This problem is simple in the case of 
monoatomic crystals like silicon (Velders & Feil, 
1989). In the case of molecular crystals it can be 
avoided by neglect of internal motion and restriction 
to rigid-body motion only (Stevens, Rys & Coppens, 
1977). In the presence of strong molecular interaction, 
however, as is the case with short intermolecular 
hydrogen bonds, the rigid-body model gives a poor 
description of thermal motion. 

Several methods of dividing a molecule into atomic 
parts have been proposed. The widely used Mullikan 
population analysis is based on a partitioning of the 
one-electron density matrix into atomic submatrices. 
The results of the method vary greatly with the basis 

set used in the ab initio calculation. Because of this 
basis-set dependence it is not suitable for our purpose. 
Another method has been proposed by Bader, 
Beddall & Cade (1971). It is based on the topological 
properties of the crystalline electron-density distribu- 
tion and divides the molecule into sharply bounded 
atomic regions. The calculation of the structure factor 
requires the Fourier transform of the electron-density 
distribution. For sharply bounded atoms this can 
only be achieved by cumbersome three-dimensional 
windowing techniques. This computational problem 
makes the method very unattractive. The effect of 
boundaries on the scattering factor is discussed in 
the Appendix. 

Here we propose a scheme that is based on the 
Stockholder partitioning (Hirshfeld, 1977b). Since 
the Stockholder atoms possess fuzzy boundaries there 
is no problem of windowing. To the scattering factor 
of each Stockholder atom we apply a Debye-Waller 
factor. We also give an algorithm by which the scatter- 
ing factor of the ab initio nonspherical atom can be 
calculated on a computer. 

2. Computational method 

The method requires that the electron-density distri- 
bution p of a molecule has been calculated at points 
r on a specific grid by some (quantum-chemical) 
method. The grid is chosen as described below. 

The electron-density distribution of a molecule can 
be expressed in two parts, 

p(r) = p(r)pro + Ap(r), (1) 

where Ppro(r), the promolecule electron-density distri- 
bution, is defined as the sum of the localized spherical 
atomic density distributions p°(r), 

Ppro(r) = ~ p °(r-  Ri). (2) 
i 

Ap(r) is the difference density due to chemical bond- 
ing. In the absence of Ap(r), partitioning becomes 
trivial, 

p°(r-Rj)=[p°(r-Rj)/Ppro(r)]ppro(r). (3) 

Hirshfeld's Stockholder method applies the same par- 
titioning scheme to Ap(r), 

A&(r)=[p°(r-Rj)/ppro(r)]Ap(r). (4) 

The atomic scattering factor is then 

fj(k)=~;[p°(r)+Apj(r+Rj)]. (5) 

The first term of the Fourier transform can be calcu- 
lated by standard methods from atomic wave func- 
tions (McWeeney, 1951). In general there will be no 
analytical expression for the Fourier transform of Apt. 
We present a scheme that only requires the ability to 
compute Apt(r) at any given point r. The first step is 
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to expand zips(r), 

c o  c o  l 

zipj(r)= ~ ~ ~ Cnlm, j S l m ( O  , ~)L~(al, jr)(otl, jr) 1 
n = 0  i=0 m=--I  

x e x p ( - a t ,  sr), (6) 

where Lib(r) are associated Laguerre polynomials and 
Sz~(O, ~o) are real spherical harmonics. For practical 
purposes, the infinite series in (6) can be truncated 
at n = 8 and 1 = 4. The m,j in (6) are arbitrary positive 
constants that can be adjusted so as to minimize the 
effect of the series truncation. The accuracy of the 
expansion (6) is illustrated in Fig. 1. 

From the orthogonality properties of the spherical 
harmonics, 

2 7 r  

d0 ~ d~p sin (O)Stm(O, ~p)Srm,(O, ~0)=Su,6m,,,, (7) 
0 0 

and of the associated Laguerre polynomials, 

dr  i l L,(r)L, , (r)r  t e x p ( - r ) = [ ( n + l ) ! / n ] 8 , , , ,  (8) 
0 

where 8 is the Kronecker delta function, the 
coefficients c,~m,s in (6) are given by 

Oll, jltl ! 
/ dr  dO d~p sin (O) c~"'w - (n + I) ! 
i #  

0 0 0 

xS,~(O, ~p)Ll.(a,.F)Apg(r). (9) 

The integrals in (9) can be evaluated with high 
accuracy by numerical integration. The angular coor- 
dinate 0 appears in the integrand of (9) as a product 
of associated Legendre functions of cos/7, explicitly 
as L~(al, F) and implicitly in zips(r). Therefore, the 0 
integration can be carried out by Gauss-Legendre 
quadrature in cos 0. The products of sin m~p and 
cos me can be integrated exactly on a regular grid in 

~p. The integration over r can be carried out exactly 
by Gauss-Laguerre quadrature in re, jr. However, this 
has the disadvantage that, for each value of re, s, a 
different integration grid for r has to be used. During 
the optimization of a~,j, the global minimum of the 
mean square error in the expansion is located by 
scanning over values of m,s and then the value of m,s 
is refined to reach the true minimum. For each value 
of at, s encountered in the optimization process the 
integral in (9) has to be evaluated. The calculation 
of Apj(r) is very time consuming so much computer 
time can be saved when one integration grid in r is 
used for all values of at, j. A typical r dependence of 
zips is shown in Fig. 2. From this curve it is clear that 
the integration can be limited to the interval from 0 
to 5 J,. The curve shows regions in which the value 
changes greatly. First we recognize the core region in 
which the curve steeply ascends. The next region 
contains most of the valence density in which the 
curve is much less steep. The third region is the diffuse 
part of the density in which the curve is almost flat. 
To reach sufficient accuracy we integrated separately 
in five intervals: one in the core region, two in the 
valence region and two in the diffuse region; in each 
region, eight-point Gauss-Legendre quadrature was 
used. When the series in (6) is evaluated up to at least 
n - -2 ,  the electrostatic moments of the Stockholder 
atom are retained in the expansion. 

The second step is to calculate the Fourier trans- 
form of (6). Equation (6) may be rewritten as 

co co I 

ziPs(r) = Z Z Z c'l,,,,jSt,,,(O, ~)r "+' exp (-at.jr) 
n = O  / = 0  m = - I  

(lO1 
and the Fourier transform of each term of (10) is 
given by 

i,l,,,j(k) =~ St,,,(O, 4o)r "+l exp (-at, F) exp ( ik . r )  dr. 

(11) 

. t  ~ - -  ~ . . . . , . . . . ~  ~ . . . .  ~ . . , ~  it" ' \  k.\ 
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Fig. 1. Difference density of H20 (a) from ab initio Hartree-Fock 6-31g**; (b) using the expansion (6); (c) error in expansion: 
(b) - (a). Contour interval (a), (b) 0.1 e A-3; (c) 0.05 e A -3. 
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The integral in (11) can be evaluated as pointed out 
by Stewart (1980). We make use of the expansion 
into spherical coordinates of a three-dimensional 
wave (Arfken, 1985): 

c o  

exp ( / k - r ) = 4 ~ ( I r / 2 r k )  1/2 Y, iPJp+l/2(kr) 
p=0 

P 
X ~ Y*pq(Or, q~r) Ypq(Ok, ~Ok), (12) 

q = - - p  

where Jp+l/E(r) is a Bessel function and Ypq(O, ~o) is 
a spherical harmonic. Substitution of (12) into (11) 
and application of the orthogonality properties of 
spherical harmonics yields 

c o  

Alm,j(k) =4"n'i'Szm( Ok, ~k) ~ rn+t+E('n'/2rk) 1/2 
o 

xJt+l/E(kr) exp ( - a l j r )  dr. (13) 

To solve the integral in (13) we use (Ryshik & 
Gradshteyn, 1965) 

/+l(~r/2rk)l/EJt+l/E(kr) exp (-at ,  jr) dr 
o 

= (2k) ' l ! / (a~j  + k2)/+1. (14) 

The power of r on the left hand side of (14) can be 
raised to the desired value by differentiating (14) with 
respect to -a t ,  j. The final result is the scattering factor 
of a Stockholder atom: 

o o  o o  i 

f j ( k ) = f ° ( k )  + E Y. ~ c't,,j/,~,,,,j(k). (15) 
n = 0  / = 0  m = - I  

- 1  

" - 2  

- 3  

- 4  

- 5  i i 1 1 t 

0 . 0 0  0 . 5 0  1 .00  1 .50  2 . 0 0  2 . 5 0  3 . 0 0  

r 

Fig. 2. Radial dependence of the difference-density function of an 
atom in the water molecule for ! = 0, m = 0, computed from ab 
initio Hartree-Fock 6-31g**, atomic units. 

Table 1. Atomic isotropic thermal displacement 
parameters in H 2 0 :  (u  2) (A  2) 

Temperature Atom 
(K) O n 

0 0.0000 0.0000 
100 0.0121 0.0289 
300 0.0256 0.0400 

The next step, which leads to the crystal structure 
factor, is to multiply the nonspherical atomic scatter- 
ing factor given by (15) by the atomic thermal dis- 
placement factor and to sum over all atoms in the 
asymmetric unit. Symmetry operations so as to cover 
the unit cell are applied in the usual way. 

3. Application to the water molecule 

To illustrate our method we have calculated structure 
factors for a water molecule (in the experimental 
gas-phase equilibrium geometry) placed in a large 
unit cell (a = b = c = 10/~, a =/3 = 3' = 90°). The O 
atom is situated at the origin. The electron-density 
distribution of the isolated molecule was calculated 
by the Hartree-Fock-Slater Xa  discrete variational 
method (DVM) (Baerends, Ellis & Ross, 1973; 
Baerends & Ross, 1973; Baerends, Vernooys, 
Roozendaal, Boerrigter, Krijn, Feil & Sundholm, 
1985) using a triple-zeta Slater-type basis set 
augmented with d- and p-polarization functions. The 
electron-density distribution of the water molecule is 
partitioned into atomic fragments according to the 
Stockholder recipe. The scattering factors of the 
atomic fragments are calculated in the way described 
in the previous section. Individual atomic thermal- 
displacement parameters corresponding to 0, 100 and 
300 K (see Table 1) are applied to the atomic scatter- 
ing factors. The values of the thermal-displacement 
parameters are based on the work of Eriksson & 
Hermansson (1983). The atomic scattering factors are 
added with appropriate phases to yield the Fourier 
transform of the electron-density distribution of the 
water molecule. 

In experimental electron-density distribution 
studies, the influence of the difference-electron- 
density distribution on the structure factor is of inter- 
est. For the water molecule, the Fourier transform of 
Ap(r) is plotted in Fig. 3. The figure shows a large 
peak at the origin, i.e. at low scattering angles, which 
are not accessible by X-ray diffraction. The figure 
shows two peaks in the regions in reciprocal space 
corresponding to waves in the direction of the O-H 
bonds. They represent the accumulation of charge in 
the bonding regions. These peaks are in the (sin O)/A 
range that can be explored by X-ray diffraction. In 
this part of the reciprocal space, the thermal motion 
has a significant influence on the structure factor. 
This is illustrated in Fig. 4, which contains maps of 
Fourier syntheses for three different temperatures 
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Fig. 3. Scattering factor of the difference-density distribution of 
water in the plane of the molecule, (sin O)/A < 1.0 A -1, contour 
interval 0.05 e. (a) Real part; (b) imaginary part. 

(0, 100 a n d  300 K) with  series t runca t ions  at  th ree  
different  va lues  o f  (sin 0 ) /A (0.8, 1.1 a n d  1.4/~-~) .  
The d y n a m i c  e lec t ron-dens i ty  d is t r ibut ion  o f  the  ther-  
mal ly  v ibra t ing  wa te r  molecu le  has  been  a n a l y z e d  
by H e r m a n s s o n  (1983).  Fo r  0 K a n d  t r u n c a t i o n  at  
0 .8 /~-1 ,  s m o o t h  con tour s  a p p e a r  in the b o n d  a n d  
lone-pa i r  regions .  Wi th  t r unca t i on  at  h igher  angles ,  
some  detai ls  o f  the e lec t ron-dens i ty  d i s t r ibu t ion  in 
the  O - a t o m  core  region  can  be seen a n d  the  con tour s  
in the b o n d i n g  region  are modi f ied  by the  h igh-ang le  
con t r ibu t ions .  There fo re ,  to reach  convergence  o f  the  
Four ie r  synthes is ,  one  has  to inc lude  d a t a  at  m u c h  
h igher  angles .  At 100 K, no more  detai ls  o f  the  a tom 
core_reg ion  can be seen,  even when  t runca t ing  at  
1 . 4 / ~ 1 .  At 3 0 0 K ,  even the  b o n d  a n d  lone -pa i r  
fea tures  b e c o m e  weak.  

Figs. 3 a n d  4 imply  tha t  only  a l imited a m o u n t  o f  
i n f o r m a t i o n  on the  e lec t ron-dens i ty  d i s t r ibu t ion  can  
be o b t a i n e d  by  X - r a y  diff ract ion.  U n d e r n e a t h  the  
dis t inct  peaks  in a Fou r i e r  m a p  there  is a diffuse 
pa t t e rn  o f  cha rge  red i s t r ibu t ion  tha t  is r ep r e sen t ed  
by a few low-angle  reflections.  In a l eas t - squares  
re f inement  us ing  a mul t ipo le  model ,  this diffuse 
par t  of  th~ d i f fe rence-e lec t ron-dens i ty  d i s t r ibu t ion  
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Fig. 4. Fourier syntheses of the difference-density distribution of water at three temperatures and three cutoff values in (sin 0)/A, 
contour interval 0.1 e A -3. 
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provides only a small contribution to the sum of 
squares owing to the low scattering power of that 
density and to the small number of low-order reflec- 
tions. Consequently, the value of the diffuse density 
is subject to large errors. For three sets of structure 
factors, one without thermal motion and the others 
at 100 and 300 K, we have performed multipole 
refinements with respect to IFI, with unit weights, 
using the LSEXP model (Hirshfeld, 1977 a). Structure 
factors up to (sin 0)/A = 1.4 ~-~ were included in the 
refinement. The refinements resulted in unweighted 
R factors that were less than 0.002. The resulting 
static electron-density distribution calculated from 
the multipole functions is plotted in Fig. 5. Com- 
parison of Fig. 5 with Fig. 1 shows that the multipole 
refinement succeeds well in the deconvolution of the 
thermal smearing. The differences in the bond and 
lone-pair regions of the static maps are very small. 
The main difference is in the region near the atom 
nucleus: owing to truncation at (sin 0)/A = 1.4/~-~, 
the polarization of the atom core is completely lost 
in the static maps. 

4. Concluding remarks 

We developed a method to calculate X-ray structure 
factors from an ab initio electron-density distribution 
that includes the rigid following model of thermal 
motion. The molecular-electron-density distribution 
is partitioned into atomic fragments according to the 
Stockholder recipe. The Fourier transform of the elec- 
tron-density distribution of the Stockholder atom can 
be expressed analytically by a series. 

The contribution of the difference-electron-density 
distribution to the X-ray scattering factor is calculated 
in the case of the water molecule. The difference- 
electron-density distribution can be recovered by a 
Fourier synthesis. A multipole refinement leads to a 

successful deconvolution of the thermal motion. 
These results show some of the limitations of X-ray 
electron-density-distribution studies. Neither the 
diffuse regions of intermolecular electron-density dis- 
tributions nor the core regions of the atoms are access- 
ible for experimental X-ray diffraction studies. 

APPENDIX 
The scattering factor of 'atoms in molecules': N in N2 

According to the 'theory of atoms in molecules' 
(Bader, Beddall & Cade, 1971), the N atoms in N 2 

are separated by a plane that is, by symmetry, the trh 
plane. The nuclei are at the positions (0, 0 , - R / 2 )  
and (0, 0, R/2). The electron-density distribution of 
the second atom is related to the electron-density 
distribution of the molecule by a step function: 

pN(r) = pN2(r)Oz(r), (31) 

1, z > 0  
Oz(r)-  (A2) 

1, z < 0 .  

The scattering factor of the N atom is given by the 
Fourier transform of (31) with a phase factor added 
to displace the origin at the nuclear position. Accord- 
ing to the convolution theorem of Fourier analysis, 
this results in 

FN(k) = exp ( i k . R / 2 ) ( 2 ~ )  -3 ~ duFn2(k- u)@z(u), 

(A3) 

where R denotes (0, 0, R) and Oz(k) is the Fourier 
transform of Oz(r), given by 

Oz(k)=(27r)26(kx)8(ky) lim[i/(k~+ie)], (34) 

where 8(k) represents the Dirac delta function. Since 
we are interested here in the effect of introducing 
sharp boundaries rather than in the effect of bonding, 
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Table 2. Coefficients in equation (A6) 

! at bz 
1 0.813589 0.088342 
2 - 3 . 5 7 5 3 7 0  0.468548 
3 8.045967 1.360815 
4 - 6 . 3 3 5 4 9 6  12.893063 

the electron-density distribution of N2 is approxi- 
mated by the sum of the electron-density distributions 
of two spherically averaged atoms. This leads to the 
expression for the scattering factor of N2" 

F N 2 ( k ) = 2 c o s ( k . R / 2 ) f N ( k / 4 7 r ) .  (35) 

Here fN is the spherical atomic scattering factor. The 
scattering factor fN calculated from atomic orbitals 
expanded in Slater functions is a rational function of 
[(sin 0)/A] 2. To evaluate the integral in (A3) we 
approximate fN by 

4 

fN[(sin 0 ) / A ] =  ~ a,/{bl+[(sin 0)/A]2}. (36) 
l = l  

The coefficients in (A6) (see Table 2) were fitted to 
the scattering-factor table of N taken from Inter- 
national Tables for X-ray Crystallography (1974). The 
fit is accurate to four significant figures. Combination 
of (A3) with (A4), (A5) and (A6) leads to 

4 

FN(k) = (1/'tr) exp ( ik .  R/2)  Y'. atlim~ duir( Ux)g(Uy) 
/ = 1  e-~0 

xcos [ ( k -  u) • R/E][ b, + ( k - u / 4 7 r ) 2 ]  - '  

X(Uz + ie) -~. (A7) 

After integration over ux and Uy this can be written as 

FN(k) = (1/7r) exp ( ik-R/2)  

4 

x ~ lim at/[bn+( k 2_ e2+2ik=e)/(4.a.)2] 
/ = I  e ~ 0  

x J duz{(Eikz-  iUz- e)/[(47r)Eb, + k 2 + k 2 

+ ( k z -  Uz)2]+(iu~ + e ) / (u  2 + e2)} 

xcos [ R ( k z -  Uz)/2]. (A8) 

The integral in (A8) can be decomposed into six 
terms: 

duz{ i( kz - uz)/[ (4~r)2b, + k~ + k2 + ( k~ - uz)2]} 

x cos [ R(k~ - Uz)/2] = 0, (A9.1) 
2 2 duz{(ikz - e )/[ (47r)Ebt + k,, + ky + ( kz - Uz)2]} 

x c o s [ R ( k z - u z ) / 2 ]  
__ / (2  -4- k 2 ]  1 /2  - 7r(e - ikz)/[ (47r)Ebt + . -x- ' -y-  

x exp {-(g/E)[(gTr)2bt + k 2 + k2]]/2}, 

(A9.2) 

cos ( g k J 2 )  ~ duz[iUz/(u 2 + e2)] cos ( g u z / 2 ) = 0 ,  

(39.3) 

cos (Rkz/2) ~ duz[~/(U~z + 2 ) ]  cos (nuz/2) 

= 7r cos (Rkz/2)  exp ( - e R / 2 ) ,  

sin ( R k J 2 )  ~ du~[iuJ(U2z + e2)] sin (Ruz/2) 

= -iTr sin (Rkz/2)  exp ( - e R / 2 ) ,  

sin ( R k J 2 )  ~ duz[e/(u2 + e2)] sin (Ruz/2)=O. 

(A9.4) 

(A9.5) 

(A9.6) 

Equations (A9.1), (A9.3) and (A9.6) vanish due to 
the odd parity of the integrand. Equations (A9.2) and 
(A9.4) follow from the cosine Fourier transform of 
exp (-Ixl). Equation (A9.5) follows from the sine 
Fourier transform of sign (x) exp (-[xl). After taking 
the limit as e ~ 0 and substituting (A6), one obtains 
the final result (with ¢ the angle between k and R) 

4 

Fy(k) =fy[ (s in  0 ) / A ] -  Z ali(cos ~o)(sin 0) 
l = l  

x A { b, + [ (sin 0) / A ]2}-1 

x exp [-2"n'R ({bt +[(sin ~,)(sin 0)/A ]2},/2 

-/(cos ~).(sin O)I,X)] 

x {bt + [(sin ¢)(sin 0)/A]2} -'/2. (A10) 

In Fig. 6 the result is plotted as function of(sin 0)/A 
for several values of ~. For ~ = 0  °, the curve is 
identical to the scattering-factor curve of the free 
spherical N atom. At higher values of ~ the effect of 
the sharp boundary results in oscillating curves. The 
present treatment is easily extended to deformed or 
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Fig. 6. Scattering factor according to the theory of Bader, Beddall 
& Cade (1971) of an atom in N2 as a function of (sin 0)/;t at 
four angles between k and the N-N axis: - -  real part; . . . .  
imaginary part. 
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pseudo atoms in which the atomic electron-density 
distribution is written as the sum of the free atomic 
electron-density distribution plus an expansion into 
deformation functions with Slater-type orbital radial 
dependence. 
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Abstract 

A model of crystal defects is developed to describe 
the diffraction of X-rays from imperfect crystals con- 
taining defect surfaces and crystal grains. The model, 
which is based on continuum theory for an isotropic 
homogeneous elastic medium, leads to a stochastic 
first-order differential equation, known as a Langevin 
equation. The solution of this equation is used to 
derive a correlation function for the strain-dependent 
term in the formula for the crystal reflectance. A 
consequence of the model is that the kinematic reflec- 
tivity of an imperfect crystal is given by the convo- 
lution between the perfect-crystal reflectivity and a 
function that transforms between a Gaussian and a 
Lorentzian depending on a correlation length in the 
crystal. 

Introduction 

X-ray rocking curves obtained from thin crystalline 
films or superlattices may show complicated features 
that are characteristic of the correlations between the 
crystal structures in the films. However, in the pres- 
ence of defects causing severe distortions, many of 
the features are lost and the result is usually a broad 
Gaussian-like curve, the width of which is taken as 
a measure of the quality of the crystal. The loss of 

structure in the rocking curve can be interpreted as 
a loss of information about the nature of the crystal, 
which suggests that it should be possible to model 
such a curve with only a few parameters. For example, 
the theory of X-ray diffraction by Zachariasen (1967) 
only involves the size of the mosaic-crystal grains and 
the half-width of the distribution function for the 
grain orientations. The statistical theories of X-ray 
diffraction by Kato (1980) and Becker & A1 Haddad 
(1990) contain two correlation lengths that relate to 
the statistical nature of the crystal imperfections. 

Davis (1991) suggested that a first-order stochastic 
differential equation could model the effects of a class 
of crystal imperfections on the strain-dependent term 
in the equation for the crystal reflectance. This model 
was used to derive a partial differential equation 
describing dynamical diffraction in a crystal contain- 
ing point-like defects and crystal grains that are mis- 
oriented with respect to the perfect lattice. 

In this paper, the first-order stochastic equation is 
derived from continuum theory for a homogeneous 
isotropic elastic solid containing defects. This 
equation is related to the Markov process used by 
Becker & AI Haddad (1989) to derive an order param- 
eter for their dynamical theory and it involves param- 
eters similar to those in the mosaic-crystal theory of 
Darwin, as used by Zachariasen (1967). The solution 
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